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1 Introduction

This report summarizes the activities during the period May 1, 1991 through June 30, 1992. The
following three sections describe results from three major activities: a risk-based model of software
decision making, construction of models for software development processes, and verification of
safety properties of software requirements specifications.

2 A Risk-Based Model of Software Decision Making

The recognition that the "upstream" activities (requirements analysis, systems analysis and design)
have a greater impact upon total life cycle costs and reliability [27] than do "downstream" activities
(coding and testing) [24] has led to a greater emphasis on understanding, formalizing and developing
these former activities. The ability to evaluate the implications of decisions in a project before
coding permits easier and more cost effective control over the development process.

Much current research centers on the development of formal methods [15] for software design.
Such methods often focus on correct functionality of a product [17]. Although critically important,
functionality is only one attribute needed to evaluate the effectiveness of a large system development
[28]. One must also be concerned about scheduling, costs, reliability, performance, and numerous
other attributes beyond those of simply correct behavior.

Completely formal system development, as an analog to precise mathematics, is unrealistic
because of the truth that mathematics is also plagued with errors. As the famous mathematician
Richard W. Hamming states [18]:

"For generations, we have patched up the proofs of Euler, Gauss, and others less famous;
and we expect future generations to patch up proofs for our theorems. The myth that
there is absolute, ultimate rigor in mathematics goes on despite evidence to the contrary.
Why do people believe that if we are completely rigorous enough, we can get completely
reliable programs?"

In addition to the difficultly of producing correct formal descriptions for computer systems,
software development is impacted by being a human activity. Therefore human attributes, as well
as unforeseen environmental occurrences, increase uncertainty. Software project managers have
preconceived ideas of how to proceed, and corporate policies affect decision making. Each project
is developed under unique circumstances; thus, forecasting the impacts of different decisions is very
difficult.

Prototyping has been used as a mechanism for evaluating decisions. The spiral model j6] is
often cited as an alternative to the standard waterfall model as a framework of a life cycle model
that emphasizes prototyping and risk analysis of the design process as basic concepts. However,
the spiral model is an informal description of the development process. What is needed is a formal
theory that fleshes these details. It is towards this end thatthis research is focused.
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An •appropriate formal model of software development must include certain probabilistic behav-
ior to account for some of the uncertainty inherent in the process. We have developed a process
model by adapting the functional correctness model [25] (i.e., related to denotational semantics and
the Vienna Development Method (VDM)) with risk reduction features borrowed from economic de-
cision theory.

Given alternative design strategies, we have been developing a theory of risk analysis that
permits the software manager to evaluate different designs and determine the probable success or
failure of each. It is realistic in that it permits each manager or organization to tailor the model
to his own level of risk behavior. A model like this potentially can be used to formalize the spiral
model and allow for transition of this method to new Department of Defense and other industrial
software environments for improved management of the development process.

Developing the Model

Formal specifications for complex systems need to go beyond functionality. We must consider
attributes like performance, schedule, resource usage along with functionality, in order to appropri-
ately decide on the best development strategy. In addition, software development - like any other
management approach - must weigh various decisions based upon unknown future events in order
to decide on an appropriate course of action at the present.

This strongly suggests that techniques from decision theory, economic theory and various risk
analysis models can play a role in software decision making. We have begun to develop such a
theory. Our model has the following characteristics:

" We studied the role specifications play in the design of software and developed a model of the
decisions that need to be made (261.

"* We defined the concept of a viable specification as a multidimensional extension to the usual
definition of functional correctness [25). We defined an evaluation strategy based upon a met-
ric we call the performance level in order to evaluate alternative designs to a give specification
[10].

"* We extended the model to handle risk [12]. That is, when there are alternative states of
nature, with a given probability distribution, we use equilibrium probabilities to query the
software manager in order to determine the performance level for taking each of the possible
approaches. This model allows for variations and alternative strategies of different software or
managers. In particular it can be tailored to the risk-seeking and risk-adverse -manager to
create development strategies best suited for their individual tastes (11] [13]. 0

" We built a prototype implementation called Selector using these ideas. The software manager 0
provides the set of attributes and for each potential sobltion provides the ordinal ranking of
how well that solution meets the specifications. Selector guides the manager into evaluating
various risks and seeks to determine which form of prototype provides the most information
[12]. .. Y God ff'Avall andlop3 Dt Special
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The'following briefly summarizes this development.

Assume that specifications for a program are vectors of attributes, including functionality as

one of the elements of the vectors. Let X and Y be vectors of attributes that specify alternative
solutions to a specification B. Let S be a vector of objective functions with domain being the set

of specification attributes and range [0.-.1. We call Si a scaling function and it is the degree to

which a given attribute meets its goal. We state that X solvess Y if Vi, Si(Xi) Ž_ Si(Y,). Design x

is viable (i.e., is correct) with respect to specification B and scaling function vector S if and only

if P solvess B. - . .

Each attribute may not have the same importance. Assume a vector of weights W called
constraints such that each wi E [0..1] and E wi = 1. The performance level merges multiple scaled
attributes and their constraints. Given specification vector X, scaling function S and constraints
W, the performance level is given by: PL(X, S, W) = Zi(wi x Si(Xi)). . ,- -

Given a specification vector B, scaling vector S, constraints W and potential solutions x an&'
y, X improves Y with respect to (B, S, W) if and only if:

1. X solvess B and Y solvess B

2. PL(X, S, W) > PL(Y, S, W).

Since future behavior is not known during development, there is a degree of uncertainty to this
process. We can use appropriate techniques from decision theory to evaluate potential solutions.
We represent the performance level as a matrix PL where PLi, is the performance level for solution
i under state of nature j. As before, the performance levels give a measure of how good a system
is. We can approximate this by defining the entries PLi, of performance level matrix PL as the
payoff (e.g., monetary value) for solution i under state j.

When the probability for each state of nature can be estimated, we can use expected values to
achieve an estimated performance level. Given probability distribution vector P, where pi is the
probability that state of nature sti is true, the expected payoff for alternative Xi is given by:

vi= pli,3 j (1)

Use the decision rule: Choose Xi which maximizes vi or:

max(Z pli,,i pi) (2)

Risk aversion plays an important role in decision making. This implies subjective behavior on
the part of the software manager. We assume that the following reasonable behavior rule applies:

* Decomposition: Given three payoffs a < b < c, there exists a probability p such that the
decision maker is indifferent to the choice of a guarantee of b, and the choice of getting c
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wiTh probability p and getting a with probability 1 - p. We shall refer to this probability as
decomp(a, b, c).

Let plo be the minimal value in our payoff PL and let pl* be the maximal value. We decompose
each plij as eij = decomp(plo, plitj,pl). This decomposition creates an equivalent pair of payoffs
{plo, pl*}, with probability eij of getting the more desirable pl*. Any element ei~j will satisfy the
following inequality:

plo x (1 - eij) + pl" x eij > plij (3)

The difference between the two sides of this equation reflects the manager's degree of risk averseness.
If the two sides are equal, risk analysis reduces to the expected value.

A prototype implementation of our evaluation strategy has been built in C. A manager enters
a table of attributes and initial constraints and then executes Selector. The manager is prompted
for the various equilibrium probabilities, which determine the risk averseness behavior of that
particular individual as well as objective characteristics of the particular solution being considered.
The tool then computes the performance level for each potential solution, computes the potential
gain from prototyping and offers advice on which attribute would provide the maximum gain if it
were investigated.

Validating the Model

Given the various unknowns in the states of nature, the software manager may choose to get
more information with a prototype so that a better final decision can be made. However, before
undertaking the procedure to extract more information, one should be sure that the gain due to the
information will outweigh the cost of obtaining it. Here, we try to establish an absolute boundary:
What is the value of perfect information?

If we know what is the true state of nature, we can choose the alternative that gives the highest
performance level:

=Z pj x max plij (4)

What is the value of this perfect information? The difference between our expected value
and this improved performance level is the maximum our prototype can achieve, and still be cost
effective.

We can now merge this into the definition of the spiral model. Assume we build a prototype
to test which state of nature will be triie. Given prototype P and specification B, P is a valid
prototype if P solves B for a subset of the attributes of B. Depending upon the cost of P and the
potential gain, we have the decision procedure that we need to make an effective spiral software
process model.
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3 N fodeling Software Engineering Experience

We have been working on the notion of an improved approach to software development which
reuses all forms of software knowledge to improve the software process and product. Based upon
the Quality Improvement Paradigm (QIP), we have designed an evolutionary approach to software
development that creates packages of experience for an organization that can be reused to improve
their software production. The steps of the QIP are:

"* Characterize the current project and its environment.

"* Set the quantifiable goals for successful project performance and improvement.

"* Choose the appropriate process model and supporting methods and tools for this project.

"* Execute the processes, construct the products, collect and validate the prescribed data, and
analyze it to provide real-time feedback for corrective action.

" Analyze the data to evaluate the current practices, determine problems, record findings, and
make recommendations for future project improvements.

" Package the experience in the form of updated and refined models and other forms of struc-
tured knowledge gained from this and prior projects and save it in an experience base for
future projects.

The Experience Factory

The QIP requires the support of an organization that packages, stores and retrieves information. To
support the QIP, the Experience Factory concept was created. The Experience Factory represents
a form of laboratory environment for software development where models can be built and provide
direct benefit to the projects. It represents an organizational structure that supports the QIP by
providing support for learning through the accumulation of experience, the building of experience
models in an experience base, and the use of this new knowledge and understanding in current and
future project developments.

The Experience Factory concept supports a software evolution model that takes advantage of
newly learned and packaged experiences; a set of processes for learning, packaging, and storing
experience; and the integration of these two sets of functions. As such, it requires separate logical
or physical organizations with different focuses/priorities, process models, and expertise require-
ments. It consists of a Project Organization whose focus is product delivery and an Experience
Factory whose focus is to support project developments by analyzing and synthesizing all kinds
of experience, acting as a repository for such experience, and supplying that experience to various
projects on demand. The Experience Factory packages experience by building informal, formal or
schematized, and "productized" models and measures of various software processes, products, and
other forms of knowledge via people, documents, and automated support.
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Our-research paradigm has been focused on the storage, access and integration of them in a
form of experience base and formalizing the development of data models.

TAME Model Building

Since one of the goals of the Experience Factory is to build models, we have developed methods to
do better data modeling for the software engineering domain. In order to plan,control and evaluate
the software development process, we need to collect data, analyze them and build accurate, easy
to use and interpretable models. Building software engineering models is a difficult task. The data
collected is very often noisy and heterogeneous, presenting many problems with respect to model
construction (e.g. interdependencies, outliers, complex relationships). Measurement theory, statis-
tics and machine learning provide many alternative modeling techniques and processes. However,
mainly because of the lack of data, few experiments in our field have been performed in order
to study, compare, validate and integrate the various approaches for standard software modeling
issues (e.g. detecting high risk components).

Classical techniques (e.g., regression analysis) are not always well suited for software engineering
data analysis. To build effective models in the Experience Factory, we developed a modeling
approach for analyzing software engineering data, called Optimized Set Reduction (OSR), which
adaresses many of the problems associated with the usual approaches. OSR is based on both
statistics and machine learning techniques. It generates a set of patterns relevant to predictions to
be made about an object or to general trends in an entire data set.

The goal of the OSR algorithm is to determine which subsets of experiences (i.e. pattern vectors)
from the historical data set provide the best characterizations of the object to be assessed. For
example, assume we want to assess a particular characteristic of an object (e.g. the fault density of
a component). We refer to this characteristic as the dependent variable (Y). We try to determine
which subsets of the data set yield the "best" probability distributions on the Y range. A good
probability distribution on the Y value domain is one that a concentrates a large number of pattern
vectors in either a small part of the range (Y is continuous) or a small number of dependent variable
categories (Y is discrete). One of the commonly used probability distribution evaluation functions
is the information theory entropy H. Each of the subsets yielding "optimal" distributions, referred
to as optimal subsets, are characterized by a set of conditions, or predicates which are true for all
pattern vectors in that subset. Each set of predicates characterizing a subset is called a pattern.

Methods have been developed for using OSR. for prediction, risk management and quality evalu-
ation. An experiment demonstrating the effectiveness of the technique for software cost estimation
is described in [7), which will appear in the IEEE Transactions on Software Engineering as part of
the special issue on software modelling and measurement.

Based upon our need to develop and evaluate data analysis techniques for building software
engineering models, we have also worked on the problem of detecting high risk software components
using two modeling approaches based on totally different principles and theories. The first one is the
logistic regression approach, a fairly standard technique for classification in the field of statistics.

7



The second one has been OSR. We have compared the resui~s obtained by the two modeling
approaches from several perspectives. We tried to determine how accurate they are in terms of
classification correctness (i.e. high risk over low risk component) and completeness (i.e. percentage
of high risk components detected). We also looked at understandability issues such as those listed
below.

* What kind of insights does the model yield with respect to the studied software problem?

* How does the model help software engineers to refine their qualitative reasoning rules with
respect to project management based on empirical evidence?

OSR has shown to be very effective for model building. The results of this

work [8] will be partially presented at the International

Conference on Software Reliability in October of this year. Another article is in preparation in
order to complete and enhance the results presented at the conference.

4 Verifying Requirements Properties

A software requirements document is usually the first description of a system's required behavior.
Errors in this document are difficult and expensive to correct if they axe propagated to the design
phase (or worse, to the implementation) [221. While reviews by experienced systems designers
are effective for improving the quality of requirements, significant improvements can be made if
automated analysis techniques can be applied to formal system descriptions.

SCR Requirements Specification

Software Cost Reduction (SCR) requirements specifications [1, 19] describe a system's modes of
operation and events that cause the system to change modes. SCR-style requirements specifications
model a system's behavior as a set of finite-mode machines that execute concurrently. The basic
concepts in these requirements are modes, mode classes, and events.

* A mode is a set of system states that share a common property.

* A mode class is a set of modes, and the union of the modes in a mode class must cover the
system's state space.

* A mode transition occurs between modes in the same mode class as a result of system state
changes.

* Mode transitions are specified by conditions and events, which comprise the machine's input
language.

8
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The systern is in exactly one mode of each mode class at all times. Informally, the modes and tran-
sitions in each mode class form a mode-machine that describes one aspect of a system's behavior,
and the transitional behavior of the entire system is defined by the composition of all the system's
mode-machines.

Conditions are boolean state variables, and a system's state space is the set of all possible
combinations of its conditions' values. Partitioning the state space into modes reduces the size of
requirements. A mode transition is activated by the occurrence of an event, which represents the
point in time when a condition's value changes. For example, event

@T(Condl) WHEN [Cond2]

occurs when condition Condl becomes true while condition Cond2 is true. More complex events
can be created from simpler events and conditions using boolean operators.

A mode transition condition specifies the event that triggers the transition. Two transitions
from the same mode are simultaneously enabled if their trigger events occur at the same instant.
In such a case, the mode machine is nondeterministic, and the activation of either transition (but
not both) satisfies the requirements.

The tabular format of SCR-style requirements specification is both easy to write and easy to
understand. Even so, a requirements designer will often augment the behavioral specification with
a set of global constraints on the system's behavior. The purpose of the global constraints is to
give a compact view of a system's invariant properties that may otherwise be difficult to extract
from a behavioral specification. Sometimes, the global constraints are explicitly included in the
requirements document, though they may not be expressed mathematically; their format can range
from logical formulas [20] to natural language sentences [1]. Other times, they are not included in
the requirements document, but are implicit assumptions made by the requirements designer [23].

Model Checking

If a system's behavioral requirements can be represented as a set of communicating finite-state
machines, Clarke et. al. [14] have devised a model checking algorithm to determine which states of
the system satisfy temporal logic assertions. We use an improved version of Clarke's original model
checking system, called MCB [9], as our model checker. Formulas to be checked are expressed in a
propositional branching-time logic called computational tree logic (CTL), whose operators permit
explicit quantification over all possible futures.

Most elements of the SCR requirements model correspond naturally to elements of finite-state
machines. However, there is no natural model of events because of the differences between mode
transitions and state transitions. State transitions occur based on the current state and the current
values of the input conditions. Mode transitions occur simultaneously with events; the system
spends zero time in a mode once one of its transitions has been activated. Therefore, we need to
be able to represent changes in condition values and ensure that state transitions are activated by
these value changes.

9
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To model events, we can represent modes as two states: a mode state and a trigger state.
The mode state represents the system when it is in a mode; all transitions into the original system
mode are modeled as transitions into the representative mode state. The trigger state represents the
system as it leaves a mode; all transitions leaving the original mode are represented as transitions
leaving the associated trigger state. We annotate the trigger state's transitions with the original
mode's transition conditions, and we annotate the transition from the mode state into the trigger
state with the negation of the transitions' trigger events.

We used our analysis technique to analyze two requirements documents, one for an automobile
cruise control system and one for a water-level monitoring system [31. These requirements were
written by other groups of researchers. We transformed these systems' requirements into finite-state
machines, rephrased required safety properties as logical formulas, and verified the formulas using
the MCB model checker. In both studies, we found discrepancies between the systems' requirements
specifications and their safety assertions.

While this technique is quite promising, only the model checking portion is currently automated.
The translation of SCR requirements to finite-state models is still an error-prone manual process.
This proposal will fund work to automate this translation, extend the safety properties that can
be verified to include assertions about time bounds, and provide a way to do static analysis of
implementations to determine if they are consistent with requirements.
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